Sectim2 (Jhip-gram with njetir sempting (SGNS) setiy)
ship-gram wds: veream of wards $\omega_{i} \in[N]$, witixts $c_{i} \in[N]^{L}:=[M]$ oblecred in $n$ pais ( $\omega_{i}, c_{i}$ ) (so $c_{i}$ is gived rides aroud $\omega_{i}$ )
and bativg for wad reprementations $W_{1}, \ldots, W_{N}$,
Context repersentains $C_{1}, \ldots, C_{M}$
$t$ maximise

$$
\sum_{i=1}^{\operatorname{maximise}} f\left(\omega_{i}, c_{i} ; w_{1}, \ldots, w_{N}, c_{1}, \ldots, c_{m}\right)
$$

where

$$
\begin{aligned}
f(4, l i-)= & e_{s}\left\{r\left(w_{k}^{\top} c_{1}\right)\right. \\
& +t \cdot E\left\{e_{\delta(c)}^{e_{j}} r\left(-w_{k}^{\top} c_{L}\right)\right\}
\end{aligned}
$$

where $L \sim$ cat.joincal $\left\{\frac{n_{1}^{(c)}}{7}, \ldots, \frac{n_{m}^{(c)}}{n}\right\}$
and $\gamma(x)=\frac{1}{1+e^{-x}}$ is the tandadd ejixtic functon boyit
which, by the way, satsifin $\sigma(-x)=1-\gamma(x)$, and $\gamma^{-1}(p)=\operatorname{los}\left(\frac{p}{1-p}\right)$
Binary byites ryemin

$$
\mathbb{R}(y=1 \mid x)=\gamma\left(\theta^{\top} x\right) ; \mathbb{P}(y=0 \mid x)=1-\gamma\left(\theta^{\top} x\right)=\gamma\left(-\theta^{\top} x\right)
$$

I,tapentation:
Fix $c_{1}, \ldots, c_{m}$, and mplace $t . E\left\{e_{g} r\left(-\omega_{k}^{\top} c_{L}\right)\right\}$
with $\log \left\{\gamma\left(-\omega_{e}^{\top} C_{L}\right)\right\}+\cdots+\log \left(\gamma\left(-\omega_{e}^{\top} C_{L_{t}}\right)\right)$
The oplimisis $L_{i}{ }^{\text {i.t.d. Fplints. of } L}$

$$
e_{S}\left\{\gamma\left(w_{k}^{\top} c_{l}\right)\right\}+\log \left\{\gamma\left(-w_{k}^{\top} c_{L}\right)\right\}+\ldots+\log \left(\gamma\left(-\omega_{t}^{\top} C_{L_{t}}\right)\right)
$$

for $W_{k}$ is jitting a logiste clanifios $t$ reagmie $C_{l}$ as valid (cleas 1) and $C_{L_{i}}$ as imalid (Class 0 )

Sectim 3 (Imphicit matix factrization)
Rement we an bohig tmaximize

$$
\sum_{i=1}^{n} f\left(w_{i}, c_{i} ; w_{1}, \ldots, w_{N}, c_{1}, \ldots, c_{m}\right)
$$

whe

$$
\begin{aligned}
f(k, l ;-)= & e_{s}\left\{r\left(w_{k}^{\top} c_{l}\right)\right. \\
& +t \cdot E\left\{e_{j} r\left(-\omega_{k}^{\top} c_{l}\right)\right\}
\end{aligned}
$$

where $L \sim$ catigoical $\left\{\frac{n_{1}^{(c)}}{n}, \ldots, \frac{4_{m}^{(c)}}{n}\right\}$
let $M_{l l}=W_{l}^{\top} \cdot C_{l}$. That con worit objective as oplimisation
of $\sum_{k l}$ (tums invaring kl)
where each term in the sum is

$$
\left.\left.n_{k l}^{(w c)} \log _{f}\left\{0_{k l}\left(m_{l}\right)\right\}+t \cdot n_{k}^{(w)} \cdot \frac{n_{l}^{(c)}}{n} \cdot \log _{y}\right)\left(-m_{k l}\right)\right\}
$$

Now colh $t$ maximine of each $p=\gamma\left(M_{k e}\right)$ :

$$
\begin{aligned}
& n_{h e}{ }^{(\omega c)} \log (\rho)+t \cdot n_{h}^{(\omega)} \cdot \frac{n_{e}^{(c)}}{n} \operatorname{Cog}(1-p) \\
& \hat{p}=\frac{n_{k e}{ }^{(\omega c)}}{n_{k e}{ }^{(\omega c)}+t_{n_{k}}^{(\omega)} n e^{(c)}}
\end{aligned}
$$

$$
\begin{aligned}
& =\log \left\{\frac{n_{k e}^{(v c)} / n}{\left(n_{l}^{(w)} / n\right)\left(n_{e}^{(c)} / n\right)}\right\}-\log (t) .
\end{aligned}
$$

For discrute vasiables $x, y$, the pointaris multed ingomation matrix is $\log \left\{\frac{P(x, y)}{P(x) P(y)}\right\}$, and so $\hat{M}$ con in vioud es a sligfted upprical Pm I.

Obviously can find decomposition $\hat{M}_{k l}=\hat{W}_{l}^{T} \cdot \hat{C}_{l}$
if $\hat{W}_{l e}, \hat{C}_{l}$ an high-dinensinal eworgh (e.j. nia SVO)

formal if ygu admet $\hat{\omega}_{k}, \hat{c}_{l}$ crcu't athitani'y high-dimentinal.
Juyt hecoure
$\hat{M}=\hat{W} \hat{c}^{\top}$, what $\hat{\omega}, \hat{c}=\operatorname{ag} \max$ (-bjectin Juactin) (uncoutraind) dosen't man:

$$
\hat{M} \approx \hat{W} \hat{c}^{T} \text {, when } \tilde{\omega}, \tilde{c}=\operatorname{argnar} \text { (obj) (constraind) }
$$

A wighted matix Jactinjation?
SVD of $\hat{M}$ jires $\bar{M}=\bar{W} \bar{C}^{T}$ to minimise $|\hat{M}-M|_{F}^{2}=\sum\left|\hat{M}_{i j}-M_{i j}\right|^{2}$
Howres, ar see that objective

$$
\begin{aligned}
& \left.\left.\left.n_{k l}^{(W C)} \log _{f} f_{0}\left(m_{k l}\right)\right\}+\sqrt{t \cdot n_{k}^{(w)} \cdot \frac{n_{l}^{(c)}}{n}} \cdot \log \right\} \sigma\left(-M_{k l}\right)\right\}
\end{aligned}
$$

is nut a fixed function of $\hat{M}_{k l}=\log \left(\frac{a}{b}\right)$
and in fact for $\log \left(\frac{a}{n}\right)$ fixed, i.e. $\frac{n_{k l}}{n_{l} n_{l}}$ fixed, contrimution is $x$ times higher if ward he ar content $l$ appears $x$ mare tines.

Performance matries

- rente crrelation inturen word pais (hman asciked simbarih) (Speamen comaciin) and corropesting cniu simibity $\quad S(u, v)=\frac{u^{\top} v}{|u| / v \mid}$
- aralogy "Pari ic $t$ France as Tokyo is t $\underbrace{L^{*}|u| / v \mid}_{\text {Jopan" }}$

Jound uning argwar $s\left(b^{*}, a^{*}\right) s\left(b^{*}, b\right) /\left[s\left(b^{*}, a\right)+\varepsilon\right]$

$$
\text { e.j. } s(\text { Japan, France }) s\left(J_{a p a n}, T_{\text {ohyo }}\right) / s\left(J_{\text {apan, }}, \text { Paris }\right)
$$

