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Qverview

+ Background
+ Restricted Boltzmann Machines
+ Deep (Restricted) Boltzmann Machines



e Generative model
* Feature extracting technique

 State-of-the-art collaborative filtering @ 55




Bolizanann maeehines

+ Graphical model

S + p(v), unsupervised

+ Stochastic neural
network

Visible
Nodes »

+ Energy-based

Special case of graphical model, where the goal is to learn a probability distribution form a dataset, this being
rinelrinerviced
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(Approximate) Leacning s s

Maximise likelihood:
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Positive statistic Negative statistic

Although exact maximum likelihood
learning in RBM’s is still intractable,

learning can be carried out efficiently
using Contrastive Divergence O ( ‘/‘/ Vll —|— bl)
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e Start with training data

* Run for a few steps (1-5)

» Update 6, use end state
as initialisation

“Fantasy” particles



Training Samples
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Random samples from the training set, and samples generated from one deep Boltzmann machines
by running the Gibbs sampler for 100,000 steps

Fig. 4 shows samples generated from the two DBM’s by randomly
initializing all binary states and running the Gibbs sampler for 100,000
steps. Certainly, all samples look like the real handwritten digits.



Metrics?

+ Visual inspection
+ Reconstruction error

+ Likelihood

(v:9) = p*(v;6) p(v;ba)  p*(v;ba) Z(6B)

PAY 7 () p(vi0s)  p*(vi0p) Z(04)
AIS True - - Bstimates - Time
Runs InZ WZ In(Z+6)  In(Z£35)  (mins)

100 CD1(25) 255.41 256.52 255.00,257.10 0.0000,257.73 3.3
CD3(25) 307.47 307.63 307.44,307.79 306.91,308.05 3.3

CD1(20) 279.59 279.57 279.43,279.68 279.12,279.87 3.1

On the Quantitative Analysis of Deep Belief
Networks, Salakhutdinov et al, 2008



Going DEEP

+ Stacked RBMs

+ Complex representations
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What dhanges?

+ Learning 1s harder (Positive statistic)

Greedy layerwise pretraining+Variational Learning

dlogp(v,;0) oE(v,h; 0) 0E(v,h; 0)
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Table 1: Results of estimating partition functions of BM models,
along with the estimates of lower bound on the average training
and test log-probabilities. For all BM’s we used 20,000 interme-
diate distributions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.
In Z In(Z + &) Test Train

2-layer BM  356.18 356.06,356.29 —84.62 —83.61
3-layer BM  456.57 456.34,456.75 —85.10 —84.49




Benchmark

P |0) = Y | [ B, u0)
k=1

For a simple comparison we also trained several mix-
ture of Bernoullis models with 10, 100, and 500 compo-
nents. The corresponding average test log-probabilities
were —168.95, —142.63, and —137.64. Compared to
DBM’s, a mixture of Bernoullis performs very badly. The
difference of over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the 2-layer BM
achieves an error rate of 0.95% on the full MNIST test
set. This 1s, to our knowledge, the best published result
on the permutation-invariant version of the MNIST task.
The 3-layer BM gives a slightly worse error rate of 1.01%.
This is compared to 1.4% achieved by SVM’s (Decoste and
Scholkopf, 2002), 1.6% achieved by randomly initialized
backprop, and 1.2% achieved by the deep belief network,
described in Hinton et al. (2006).



@onelusion

+ Usetul Representations
+ Hard to train

+ Probability only known up to Z



L2 in high ehimnenstonan

original messed up darkened

Pixel-based distances on high-dimensional data (and images especially) can be very unintuitive. An original image (left) and
three other images next to it that are all equally far away from it based on L2 pixel distance. Clearly, the pixel-wise distance does
not correspond at all to perceptual or semantic similarity.



Learning algo e

Boltzmann Machine Learning Procedure:

Given: a training set of NV data vectors {v}._;.

1. Randomly initialize parameters 6° and M fantasy parti-
cles. {v>' h%'}, . {#%M hOM}
2. Fort=0to T (# of iterations)
(a) For each training example v, n=1 to N

e Randomly initialize ;1 and run mean-field up-
dates Eq. 8 until convergence.

e Setu” = pu.
(b) For each fantasy particle m=1 to M

e Obtain a new state (V:T5™ hi*1'™) by run-
ning a k-step Gibbs sampler using Egs. 4, 5, ini-
tialized at the previous sample (v>™, h*™).

(c) Update
N
1
t+1 t ny ny\ I
|24 =W —|-Olt(NnE=1V (") —

1 — .
M Z {"t‘l‘l,m(ht'i'l,m)T) .
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Similarly update parameters L and J.

(d) Decrease a.



Meen IDela

Approximate Learning: Exact maximum likelihood learning in this model is intractable, but effi-
cient approximate learning of DBMs can be carried out by using a mean-field inference to estimate
data-dependent expectations, and an MCMC based stochastic approximation procedure to approx-
imate the model’s expected sufficient statistics [7]. In particular, consider approximating the true
posterior P(h|v;#) with a fully factorized approximating distribution over the three sets of hidden

units: Q(hv; p) = TT0%, T1/2, TI52 a(hY [V)a(h{> v)a (A [v), where p = {u®, p®, @)}

are the mean-field parameters with q(hgl) =1) = uz(.l) for | = 1,2,3. In this case, we can write

down the variational lower bound on the log-probability of the data, which takes a particularly sim-
ple form:

log P(v;0) > v WHp® 4y W®u@ 4@ W pu® _1og Z(6) + H(Q), @)

where 7 (-) is the entropy functional. Learning proceeds by finding the value of p that maximizes
this lower bound for the current value of model parameters 6, which results in a set of the mean-field
fixed-point equations. Given the variational parameters p, the model parameters 6 are then updated
to maximize the variational bound using stochastic approximation (for details see [7, 11, 14, 15]).



