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Key Contributions

» A training procedure and appropriate GNN
architecture.

» Assessing validity of the approach.

» Providing predictions for unseen network
structures.
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V = {v1,...,vn} is the node set.

& is the edge set.

®; = (p1(vi)y ..., 0@(vi)) are the attributes of node v;.
Qi = (wi(ejj), - - -, wp(ej)) are the attributes of edge ej;.
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Setup
In particular, we define the observed outcome as
(7i(t), = 6 (xi(t + At),m) ,Vm € S.

We assume that M acts on X; locally and identically at all times,
according to the structure of G, such that for node v;

yi = f (X, @i, xn;, X0 Qi) -
Goal: Build a model M, parameterised by tunable ©, such that
M (Xt’, G’;e) ~ M (X;, G’) .
Therefore, the outcomes from the GNN will be

_),}i - f(Xi7q>i7X/\/i7q)M7Qi/\[i;e)"
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Loss Function

We need some global loss function, say £(©), that can be
decomposed locally. The following is used

=> ) W't L(yi(t), 9i(t))-

teT’ vieV'(t)

Here

» w;(t) - the weight assigned to node v; at time t;

> Z =3 >V (1) Wi(t) - normalising factor;

» V'(t) and T~ - training node set and training time set.
We take the choice of weights to be

wi(t) o< p (ki, xi, @i, xn, P, Qinc) ™,

where k; is the degree of node v; in G.
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| Simple contagion dynamics: discrete-time
susceptible-infected-susceptible, so S = {S,/} = {0,1}. Have
a(/) as the infection probability function, where / is the
number of infected neighbours. Recovery probability is 5.

Il Complex contagion dynamics: nonmonotonic infection
function a(/).

[l Interacting contagion dynamics (with two diseases):
S={55,h5,5h Lh}=1{0,1,23}

IV Metapopulation dynamics: status of individuals are gathered
by geographical regions. E.g. Deterministic metapopulation
dynamics with constant population size, and have S, | or R for
each individual.
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Performance

» We compare GNN predictions ;(t) with corresponding target
yi(t).
» Use Pearson correlation coefficient r between predictions and
targets. Compute error as 1 — r for each degree class k.
» The GNN outperforms the MLE on Erdos-Renyi and
Barabasi-Albert networks.
A Barabasi-Albert network is one in which we begin with mg
nodes fully connected to each other. Nodes are then added one at
a time, and are each connected to m < mg existing nodes. A
connection with an existing node i is made with probability

ki
pi= =
I Zj kj

So we tend to see certain nodes become "hubs’ and others
become relatively isolated.
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Graph Neural Network Architecture

First transform state of every node, x;, with shared multilayer
perceptron using

fin: S > RY
i = Fin(xi) =1 &
or alternatively, if the attributes ®; are available
fin: S x RY — RY.
We aggregate features using a modified attention mechanism
Vi = Aatt (fhf/\/,-)‘
In addition, we have another MLP for the edge attributes
Yij = ’idge(QU)-

The outcome of each node is

Vi = four(v;)-
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Graph Neural Network Architecture

Focusing on the attention, let
aj = o [A(&) + B (&) +C (i)l

where o(.) is the usual sigmoid function. Therefore, a;; € (0,1),
where aj; = 0 implies that the state of v; has no effect on the
outcome of v;, and a;; = 1 implies the effect is maximal. The
attention is then

Vi = fatt(giyfj\f,-) =&+ Z aijfj-
viEeN;



Other important details

» The rectified Adam algorithm was used to optimise the
hyperparameters.

» When S is discrete and countable, can simplify inputs to p(.),
which we estimate as

VI T

pk,x, 1) = WU_Z]I K) x D 1 (xe(t) = x) 1 (li(t) =1).

> When we have continuous states, we cannot estimate p
directly, and so we instead use

wi(t) = [P(ki)E (&7, Q1K) 1 (R(£)] .



