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Key Contributions

I A training procedure and appropriate GNN
architecture.

I Assessing validity of the approach.

I Providing predictions for unseen network
structures.
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Setup

In particular, we define the observed outcome as

(ỹi (t))m = δ (xi (t + ∆t),m) ,∀m ∈ S.

We assume that M acts on Xt locally and identically at all times,
according to the structure of G , such that for node vi

yi = f (xi ,Φi , xNi
, xNi

,ΩiNi
) .

Goal: Build a model M̂, parameterised by tunable Θ, such that
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(
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′
t ,G

′
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Loss Function

We need some global loss function, say L(Θ), that can be
decomposed locally.

The following is used

L(Θ) =
∑
t∈T ′

∑
vi∈V ′ (t)

wi (t)

Z ′ L(yi (t), ŷi (t)).

Here

I wi (t) - the weight assigned to node vi at time t;

I Z
′

=
∑

t∈T ′
∑

vi∈V ′ (t) wi (t) - normalising factor;

I V ′
(t) and T ′

- training node set and training time set.

We take the choice of weights to be

wi (t) ∝ ρ (ki , xi ,Φi , xNi
,ΦNi

,ΩiNi
)−λ ,

where ki is the degree of node vi in G .
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Here

I wi (t) - the weight assigned to node vi at time t;

I Z
′

=
∑

t∈T ′
∑

vi∈V ′ (t) wi (t) - normalising factor;

I V ′
(t) and T ′

- training node set and training time set.

We take the choice of weights to be

wi (t) ∝ ρ (ki , xi ,Φi , xNi
,ΦNi

,ΩiNi
)−λ ,

where ki is the degree of node vi in G .



Loss Function

We need some global loss function, say L(Θ), that can be
decomposed locally. The following is used

L(Θ) =
∑
t∈T ′

∑
vi∈V ′ (t)

wi (t)

Z ′ L(yi (t), ŷi (t)).
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Four Types of Synthetic Dynamics

I Simple contagion dynamics: discrete-time
susceptible-infected-susceptible, so S = {S , I} = {0, 1}. Have
α(l) as the infection probability function, where l is the
number of infected neighbours. Recovery probability is β.

II Complex contagion dynamics: nonmonotonic infection
function α(l).

III Interacting contagion dynamics (with two diseases):
S = {S1S2, I1S2,S1I2, I1I2} = {0, 1, 2, 3}.

IV Metapopulation dynamics: status of individuals are gathered
by geographical regions. E.g. Deterministic metapopulation
dynamics with constant population size, and have S, I or R for
each individual.
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Performance

I We compare GNN predictions ŷi (t) with corresponding target
yi (t).

I Use Pearson correlation coefficient r between predictions and
targets. Compute error as 1− r for each degree class k.

I The GNN outperforms the MLE on Erdos-Renyi and
Barabasi-Albert networks.

A Barabasi-Albert network is one in which we begin with m0

nodes fully connected to each other. Nodes are then added one at
a time, and are each connected to m ≤ m0 existing nodes. A
connection with an existing node i is made with probability

pi =
ki∑
j kj

.

So we tend to see certain nodes become ”hubs” and others
become relatively isolated.
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Performance

A Graphical Interlude



Graph Neural Network Architecture
First transform state of every node, xi , with shared multilayer
perceptron using

f̂in : S → Rd

xi 7→ f̂in(xi ) =: ξi

or alternatively, if the attributes Φi are available

f̂in : S × RQ → Rd .

We aggregate features using a modified attention mechanism

νi = f̂att (ξi , ξNi
) .

In addition, we have another MLP for the edge attributes

ψij = f̂edge(Ωij).

The outcome of each node is

ŷi = f̂out(νi ).
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Graph Neural Network Architecture

Focusing on the attention, let

aij = σ [A (ξi ) + B (ξj) + C (ψij)] ,

where σ(.) is the usual sigmoid function. Therefore, aij ∈ (0, 1),
where aij = 0 implies that the state of vj has no effect on the
outcome of vi , and aij = 1 implies the effect is maximal. The
attention is then

νi = f̂att(ξi , ξNi
) = ξi +

∑
vj∈Ni

aijξj .
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Other important details

I The rectified Adam algorithm was used to optimise the
hyperparameters.

I When S is discrete and countable, can simplify inputs to ρ(.),
which we estimate as

ρ(k , x , l) =
1

|V|T

|V|∑
i=1

1 (ki = k)×
T∑
t=1

1 (xt(t) = x)1 (li (t) = l) .

I When we have continuous states, we cannot estimate ρ
directly, and so we instead use

wi (t) = [P(ki )Σ (Φi ,Ωi |ki ) Π (x̄(t))]−λ .


