

Estimation in Unnormalised Models

Maximum Likelihood

- write down likelihood as function of θ
- (try to) maximise this function
- easy? (conceptually, in practice)
- hard? (non-standard models)
- variants (penalised, Bayes, ...)

7 MLE

Cramér-Rao, Fisher Efficiency

- consider asymptotic (co)variance of estimator
- among unbiased estimators, can't beat MLE
- same for biased (more conditions)

open and shut case? (asymptotically)

Quick proof of Cramér-Rao

$$\begin{array}{lll}
a &=& \nabla_{\theta} \langle a, \theta \rangle \\
&=& \nabla_{\theta} \int P(\times | \theta) \langle a, T(\times) \rangle dx \\
&=& \int P(\times | \theta) \langle a, T(\times) \rangle \nabla_{\theta} \log P(\times | \theta) dx \\
&=& (\int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) T(\times)^{T} dx) a \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) T(\times) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) T(\times) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) T(\times) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) dx \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) \\
&=& \int P(\times | \theta) \nabla_{\theta} \log P(\times | \theta) \nabla_{\theta} \nabla_{\theta} \log P(\times | \theta) \nabla_{\theta} \nabla_{\theta} \nabla_{$$

Challenges of MLE

- tractability (convexity, computability, ...)
- robustness / sensitivity (misspecification)
- identifiability (parametrisation, symmetries)

When is MLE hard / weird?

- Gamma, Beta (too too code up Γ, ψ?)
- Mixture of Gaussians (non-identifiable, non-convex)
- Latent Variable Models (likelihood = integral)
- Non-Regular Models (uniform, constrained)

Alternatives to MLE

- method of moments (GMM, GEE, QL, ...)
- one-step estimator (√n + Newton)
- robustified, Z-/M-estimation
- (model-specific, more fancy stuff, ...)

Unnormalised Models

• "energy-based", "doubly-intractable"

$$P(x|\theta) = \frac{f(x,\theta)}{z(\theta)}$$

- usually dim $x \gg 1$ (otherwise, could integrate)
- from DAGs to Factor Graphs, causes to interactions

Unnormalised Models

- Ising, (Deep, Restricted) Boltzmann Machine
- (Gaussian, Hidden, Sequential) Markov Random Field
- Text Models, Image Models (Field of Experts)
- ERGMs, Stochastic Block Model, Random Networks
- (Kernel) Exponential Family

Can it get worse?

- latent variables as well! (HMRF, RBM)
- conditionally-unnormalised as well! (LATKES)
- high-dimensional! (d × n)
- nonparametric! (log f = NN, Kernel, ...)
- but, already pretty hard ...

MLE Objective, Algorithms

• (MC)MC-MLE / Importance Sampling

$$\log Z(\theta) \approx \log \left(\frac{1}{M} \sum_{j=1}^{M} \frac{f(y_{j}, \theta)}{g(y_{j})}\right)$$

Stochastic Approximation, Contrastive Divergence

$$\nabla_{\theta} \log Z(\theta) = \left[E_{\theta} \left[\nabla_{\theta} \log f(x, \theta) \right] \right]$$

Non-MLE Objectives

- that damn normalising constant!
- can we make it cancel out?
- tricks: differences, ratios, components
- _some_ part of the model is tractable?
- safety check: support of P

Graphical Methods

- P (X_A | X_B) tractable for some A, B
- Pseudo-Likelihood (A = {i}, B = V \ {i})
- Composite Likelihood (arbitrary A, B)
- applicable for MRFs (no sparsity needed!)
- often convex

Pseudo-Likelihood Example

Consider pairwise Markov Random Field

$$P(x|\theta) = \frac{\exp(\Sigma_{i\sim j}, \theta_{ij} x_i x_j)}{Z(\theta)}$$

$$\Rightarrow P(X; IX_{i}, \theta) = Ber(X; I\sigma((\Theta X);))$$

- In practice: constrain / regularise θ
- Remark: Belief Propagation for Sub-Trees

Difference Methods

- $\nabla_{x} \log P(x | \theta) = \nabla_{x} \log f(x, \theta)$
 - \rightarrow no Z (θ)! (c.f. OLD / MCMC)
- requires smoothness of model
- Score Matching, Stein Discrepancies
- different complexities, both often convex

Score Matching Objective

Score Matching Objective (Q = Data)

$$\mathbb{E}_{\alpha}\left[\left|\nabla_{x}\log\alpha(x)-\nabla_{x}\log P(x|\theta)\right|^{2}\right]$$

$$\mathcal{L}_{\alpha}\left[2\Delta_{x}\log P(x|\theta)+|\nabla_{x}\log P(x|\theta)|^{2}\right]+c$$

KSD Objective

Kernel Stein Discrepancy Objective (Q = Data)

$$\mathbb{D}_{p}(\alpha)^{2} = \sup_{h \in \mathbb{H}} \mathbb{E}_{\alpha}[(\mathcal{I}^{p}h)(x)]^{2}$$

$$=\mathbb{E}_{\alpha\alpha}\left[\left(\mathcal{I}^{r}\mathcal{I}^{r}\mathcal{K}\right)(x,y)\right]$$

Rational Methods

- $P(y|\theta)/P(x|\theta) = f(y,\theta)/f(x,\theta)$
- Ratio Matching
- Let Q (x) be known, classify Q (x) vs P (x I θ)
 - Optimal: σ (log Q (x) log f (x, θ) log Z (θ))
 - Noise-Contrastive Estimation

• Stein Density Ratio Estimation (a bit of both)

Ratio Matching Objective

$$\left[\left(\frac{\beta(\alpha(\phi \times))}{\alpha(x)} - \beta\left(\frac{P(\phi \times 10)}{P(\times 10)} \right) \right)^{2} \right] + symmetrise$$

$$= \left[\left(\left(- \frac{P(\phi \times |\theta)}{P(\times |\theta)} \right)^{2} \right] + const.$$

Noise-Contrastive Estimation

$$X_1, -, X_N \stackrel{\text{iiid}}{\sim} P(x|\theta)$$
 $y_1, -, y_M \stackrel{\text{iiid}}{\sim} Q(y)$

$$U = m/n$$

, uh known

$$P(3=1|u) = \frac{1}{1 + VQ(u)/P(u|\theta)}$$

• often convex in (θ, c)

Related / Frontiers

- Denoising Autoencoders, Denoising Score Matching
- Score Estimation (SBGM, DDPM, ...)
- Learned Stein Discrepancies (beyond Kernels)
- Hybrids with other approaches

