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Estimation In
Unnormalised Models
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Maximum Likelihood

e write down likelihood as function of 6 A

o (try to) maximise this function ﬁ mLE

e easy? (conceptually, in practice)
o hard? (non-standard models)

o Vvariants (penalised, Bayes, ...)
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consider asymptotic (co)variance of estimator

among unbiased estimators, can't beat MLE
same for biased (more conditions)

open and shut case? (asymptotically)
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Quick proof of Cramér-Rao

3 = V{306
=, J P(x18) {3, T(X) dx
= [ PIx16) <3, Tea) V, log Pix|8) dx
c (f P(x16) Vg log Plxl0) Tt)' J*) :
=) T = Cov(Vylog Ptx18),Tew) = apply ¢S
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Challenges of MLE

o tractability (convexity, computability, ...)
e robustness / sensitivity (misspecification)

o Identifiability (parametrisation, symmetries)
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When is MLE hard / weird?

e (Gamma, Beta ( too 2l to code up I, Y?)

o Mixture of Gaussians (non-identifiable, non-convex)

o Latent Variable Models (likelihood = integral)

» Non-Regular Models (uniform, constrained)
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Alternatives to VILE

» method of moments (GMM, GEE, QL, ...)

» One-step estimator (Vn + Newton)

e robustified, Z-/M-estimation

o (model-specific, more fancy stuff, ...)
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Unnormalised Models

e ‘energy-based’, "doubly-intractable”

P(x|g) = Tl =

* usually dim x » 1 (otherwise, could integrate)

e from DAGs to Factor Graphs, causes to interactions
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Unnormalised Models

Ising, (Deep, Restricted) Boltzmann Machine

(Gaussian, Hidden, Sequential) Markov Random Field

Text Models, Image Models (Field of Experts)
ERGMs, Stochastic Block Model, Random Networks

(Kernel) Exponential Family
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Can it get worse?

e latent variables as well!l (HMRF, RBM)
o conditionally-unnormalised as well! (LATKES)

o« high-dimensional! (d < n)

e nonparametric! (log f = NN, Kernel, ... )

e Dut, already pretty hard ...
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MLE Objective, Algorithms

e (MC)MC-MLE / Importance Sampling

|09 2(6) = [0@(/‘\ ?: ' j‘?tz[ly,)e))

o Stochastic Approximation, Contrastive Divergence

(79 lag 2(8) - [Ee [Ve log fix 6’)]
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Non-MLE Obijectives

o that damn normalising constant!

e cCan we make it cancel out?

o tricks: differences, ratios, components

e _Some_ part of the model is tractable?

o sSafety check: support of P
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Graphical Methods

=8 , P (X_AIX_B) tractable for some A, B

i o Pseudo-Likelihood (A={i},B=V\{i})

o Composite Likelihood (arbitrary A, B)
o applicable for MRFs (no sparsity needed!)

o Often convex
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Pseudo-Likelihood Example

o Consider pairwise Markov Random Field

P(xlg) = &2 6:%%)

Z2(6)
= P(XiIx,0) = Ber (x|l ((OX);))

e In practice: constrain / regularise 6

o Remark: Belief Propagation for Sub-Trees
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Difference Methods

ViogP(x10)=V logf(x,9)
e ~noZ(06)!(c.f.OLD /MCMC)

requires smoothness of model

Score Matching, Stein Discrepancies

different complexities, both often convex
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Score Matching Objective

e Score Matching Objective (Q = Data)
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KSD Objective

e Kernel Stein Discrepancy Obijective (Q = Data)

D(&) = 3% E,|(ff )]
T HE(Q Y, l(fxirv K)(X' y)}
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Rational Methods

o P(ylB)/P(x18)=f(y,0)/f(x, 0)
 Ratio Matching
e LetQ (x)beknown,classifyQ(x)vsP (x106)
e Optimal:o(logQ (X)—logf(x,0)-logZ(86))

Noise-Contrastive Estimation

w

 Stein Density Ratio Estimation (a bit of both)


https://bitpaper.io

eeeeeeeeeeeeeee

Ratio Matching Objective

E|(r(2)-#(zes)
= ‘- [(\ F('F-(%‘IITB) )} + Const

F

} + svmmt.fri‘se
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e often convexin (6, c)
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Related / Frontiers

* Denoising Autoencoders, Denoising Score Matching
e Score Estimation (SBGM, DDPM, ...)
e Learned Stein Discrepancies (beyond Kernels)

o Hybrids with other approaches
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